La gobernanza internacional de la inteligencia artificial (IA) reúne a gobiernos, organizaciones internacionales, empresas, academia y sociedad civil para definir reglas, normas y mecanismos que orienten el desarrollo y uso de estas tecnologías. Los debates combinan cuestiones técnicas, éticas, económicas, de seguridad y geopolíticas. A continuación se presentan los temas centrales, ejemplos concretos y mecanismos que se proponen o aplican en distintos foros.
Amenazas para la seguridad y la integridad
La atención dedicada a la seguridad abarca errores involuntarios, usos malintencionados y repercusiones estratégicas de gran alcance. Entre los aspectos esenciales se encuentran:
- Riesgos sistémicos: la posibilidad de que modelos extremadamente avanzados se comporten de manera inesperada o superen los mecanismos de control, comprometiendo infraestructuras críticas.
- Uso dual y militarización: la incorporación de IA en armamento, sistemas de vigilancia y operaciones de ciberataque. En debates de la ONU y del Convenio sobre Ciertas Armas Convencionales se analizan opciones para regular o incluso vetar sistemas de armas totalmente autónomos.
- Reducción del riesgo por diseño: estrategias como evaluaciones adversarias, auditorías de seguridad y la exigencia de análisis de riesgo previos a cualquier implementación.
Ejemplo: en el escenario multilateral se debate la formulación de reglas obligatorias relacionadas con SALA (sistemas de armas letales autónomas) y la implementación de mecanismos de verificación destinados a impedir su proliferación.
Derechos humanos, privacidad y vigilancia
La IA plantea retos para derechos civiles y libertades públicas:
- Reconocimiento facial y vigilancia masiva: riesgo de erosión de la privacidad y discriminación. Varios países y la Unión Europea estudian restricciones o moratorias para usos masivos.
- Protección de datos: gobernanza del uso de grandes volúmenes de datos para entrenar modelos, consentimiento, minimización y anonimización.
- Libertad de expresión e información: moderación automatizada, generación de desinformación y deepfakes que afectan procesos democráticos.
Caso: campañas de desinformación potenciadas por generación automática de contenido han llevado a debates en foros electorales y a propuestas para obligaciones de transparencia sobre el uso de sistemas generativos en campañas.
Equidad, no discriminación y inclusión
Los modelos pueden reflejar o incluso intensificar sesgos existentes cuando los datos de entrenamiento no resultan suficientemente representativos:
- Discriminación algorítmica: revisiones independientes, indicadores de equidad y procedimientos de corrección.
- Acceso y desigualdad global: posibilidad de que la capacidad tecnológica se concentre en unas pocas naciones o corporaciones; urgencia de impulsar la transferencia tecnológica y la cooperación para fortalecer el desarrollo local.
Dato y ejemplo: estudios han mostrado que modelos entrenados con datos sesgados dan peores resultados para grupos subrepresentados; por ello iniciativas como evaluaciones de impacto social y requisitos de testeo público son cada vez más solicitadas.
Transparencia, explicabilidad y trazabilidad
Los reguladores discuten cómo garantizar que sistemas complejos sean comprensibles y auditables:
- Obligaciones de transparencia: informar cuando una decisión automatizada afecta a una persona, publicar documentación técnica (fichas del modelo, orígenes de datos) y facilitar mecanismos de recurso.
- Explicabilidad: niveles adecuados de explicación técnica para distintos públicos (usuario final, regulador, tribunal).
- Trazabilidad y registro: bitácoras de entrenamiento y despliegue para permitir auditorías posteriores.
Ejemplo: la propuesta legislativa de la Unión Europea clasifica sistemas según riesgo y exige documentación detallada para los considerados de alto riesgo.
Cumplimiento y responsabilidad legal
La cuestión de cómo asignar la responsabilidad por daños ocasionados por sistemas de IA se ha convertido en un punto clave:
- Regímenes de responsabilidad: se discute si debe recaer en el desarrollador, el proveedor, el integrador o el usuario final.
- Certificación y conformidad: incluyen esquemas de certificación previa, evaluaciones independientes y posibles sanciones en caso de incumplimiento.
- Reparación a las víctimas: se plantean vías ágiles para ofrecer compensación y soluciones de remediación.
Datos normativos: la propuesta de la UE prevé sanciones ajustadas a la gravedad, incluidas multas de gran envergadura ante incumplimientos en sistemas clasificados como de alto riesgo.
Propiedad intelectual y acceso a datos
El uso de contenidos destinados al entrenamiento de modelos ha provocado fricciones entre la creación, la reproducción y el aprendizaje automático:
- Derechos de autor y recopilación de datos: disputas legales y demandas de precisión acerca de si el proceso de entrenamiento representa un uso permitido o necesita una licencia formal.
- Modelos y datos como bienes estratégicos: discusiones sobre la conveniencia de imponer licencias obligatorias, habilitar el intercambio de modelos en repositorios abiertos o limitar su exportación.
Varios litigios recientes surgidos en distintos países han puesto en entredicho la legalidad del entrenamiento de modelos con material protegido, lo que está acelerando ajustes normativos y promoviendo acuerdos entre las partes involucradas.
Economía, empleo y competencia
La IA es capaz de remodelar mercados, empleos y la organización empresarial:
- Sustitución y creación de empleo: diversas investigaciones revelan impactos mixtos: ciertas labores se automatizan mientras otras reciben apoyo tecnológico, por lo que resultan esenciales las políticas activas de capacitación.
- Concentración de mercado: existe la posibilidad de que surjan monopolios debido al dominio de datos y de modelos centrales, lo que impulsa el debate sobre competencia e interoperabilidad.
- Impuestos y redistribución: se analizan esquemas de tributación sobre ganancias ligadas a la automatización, así como mecanismos para sostener la protección social y los programas de recualificación. Sustentabilidad del entorno
- Huella de carbono: la preparación de modelos de gran escala puede requerir un uso considerable de energía; se debaten métricas y posibles límites.
- Optimización y transparencia energética: adopción de sistemas de eficiencia, divulgación del consumo y transición hacia infraestructuras alimentadas con fuentes renovables.
- Marco de normalización: elaboración de estándares técnicos internacionales que abordan la solidez, las interfaces y los formatos de datos.
- Interoperabilidad: asegurar que distintos sistemas puedan colaborar manteniendo niveles adecuados de seguridad y privacidad.
- Rol de organismos internacionales: OCDE, UNESCO, ONU, ISO y diversos foros regionales intervienen en la coordinación y armonización regulatoria.
- Inspecciones y auditorías internacionales: se plantean observatorios multilaterales que monitoreen el cumplimiento y difundan información técnica.
- Mecanismos de cooperación técnica: apoyo para naciones con menor capacidad, intercambio de buenas prácticas y recursos destinados a reforzar la gobernanza.
- Sanciones y medidas comerciales: debate sobre restricciones a la exportación de tecnologías delicadas y acciones diplomáticas frente a eventuales incumplimientos.
- Regulación vinculante: leyes nacionales y regionales que imponen obligaciones y sanciones (ejemplo: propuesta de ley en la Unión Europea).
- Autorregulación y códigos de conducta: guías emitidas por empresas y asociaciones que pueden ser más ágiles pero menos exigentes.
- Herramientas de cumplimiento: evaluaciones de impacto, auditorías independientes, etiquetas de conformidad, y entornos experimentales regulatorios para probar políticas.
- Procesos participativos: audiencias públicas, órganos éticos y la presencia de comunidades involucradas.
- Educación y alfabetización digital: con el fin de que la población comprenda los riesgos y se involucre en la toma de decisiones.
- Competencia tecnológica: inversiones estratégicas, subsidios y alianzas que pueden crear bloques tecnológicos divergentes.
- Normas divergentes: diferentes enfoques regulatorios (más restrictivo versus más permissivo) afectan comercio y cooperación internacional.
- Principios de la OCDE: directrices destinadas a promover el uso responsable y fiable de la IA.
- Recomendación de la UNESCO: marco ético concebido para orientar la formulación de políticas nacionales.
- Propuestas regionales: la Unión Europea desarrolla un reglamento basado en la gestión del riesgo y en exigencias de transparencia y seguridad.
El impacto energético y material asociado al entrenamiento y funcionamiento de los modelos se encuentra sujeto a regulaciones y prácticas recomendadas:
Estudio relevante: investigaciones han mostrado que el entrenamiento intensivo de modelos de lenguaje puede generar emisiones equivalentes a decenas o cientos de toneladas de CO2 si no se optimiza el proceso.
Normas técnicas, estándares y interoperabilidad
La adopción de estándares promueve mayor seguridad, confianza y dinamiza el comercio:
Ejemplo: la OCDE elaboró una serie de principios sobre la IA que se han convertido en una guía para numerosas políticas públicas.
Procesos de verificación, observancia y coordinación multilateral
Sin mecanismos de verificación sólidos, las normas quedan como simples declaraciones:
Caso: restricciones en el comercio de semiconductores demuestran cómo la tecnología de IA puede convertirse en materia de política comercial y seguridad.
Mecanismos regulatorios y herramientas prácticas
Las respuestas normativas varían entre instrumentos vinculantes y enfoques flexibles:
Gobernanza democrática y participación de la ciudadanía
La validez de las normas se sustenta en una participación amplia:
Ejemplo: iniciativas de consulta ciudadana en varios países han influido en requisitos de transparencia y límites al uso de reconocimiento facial.
Relevantes presiones en el escenario geopolítico
La carrera por la primacía en IA implica riesgos de fragmentación:
Resultado: la gobernanza global intenta conciliar la armonización regulatoria con la autonomía tecnológica.
Iniciativas y menciones multilaterales
Existen diversas iniciativas que actúan como punto de referencia:
Estas iniciativas muestran la combinación de normas no vinculantes y propuestas legislativas concretas que avanzan en distintos ritmos.
La gobernanza internacional de la IA se configura como un sistema en constante evolución que ha de armonizar requerimientos técnicos, principios democráticos y contextos geopolíticos. Para que las respuestas resulten efectivas, se precisan marcos regulatorios definidos, procesos de verificación fiables y mecanismos